
Using Text N-Grams for Model Suggestions in 3D Scenes∗

Laureen Lam†

Stanford University
Sharon Lin†

Stanford University
Pat Hanrahan†

Stanford University

Abstract

Creating 3D scenes requires artistic skill and is time-consuming.
A key challenge is finding novel models to place in a partial scene.
We present a new algorithm to propose relevant models by leverag-
ing text data. Our algorithm takes a partially completed 3D scene
as input and a user-specified region of interest. It then suggests
additional models according to the point-wise mutual information
between the labels of nearby models in the scene and the labels
of models in the database. We show that our text-based system
suggests more models that result in model arrangements not ob-
served in the training corpus, compared to a Graph Kernel system
that trains on 3D scene data. Furthermore, combining the Graph
Kernel system with our new system increases the number of un-
observed model arrangements for the Graph Kernel, with higher
precision according to human evaluators.

CR Categories: I.3.5 [Computing Methodologies]: Computer
Graphics—Computational Geometry and Object Modeling I.2.7
[Artificial Intelligence]: NLP—Text Analysis;

Keywords: 3D model search, scene modeling

1 Introduction

Virtual game worlds need many realistic 3D models to create rich
and immersive environments. However, modeling 3D scenes is dif-
ficult and time-consuming, partly because they contain many ob-
jects. Our goal is to make 3D scene modeling faster, easier, and
more enjoyable. In particular, this paper tackles the problem of
finding relevant and novel models to complete a partial scene.

Previous approaches to this problem often involve learning model
relationships from examples of 3D scenes [Fisher et al. 2011; Fisher
and Hanrahan 2010]. While these approaches are effective when a
training corpus of 3D scenes is available, in practice such corpora
are often small, domain-specific, and time-consuming to produce.
Because of this, it is important for a suggestion system to be able
to provide suggestions that result in model arrangements not previ-
ously seen in the training corpus.

In this paper, we are primarily interested in suggestions that result in
previously unobserved model arrangements. A model arrangement
is defined as an observed arrangement if any of its model pairs were
seen within the same neighborhood in the training examples. For
instance, a suggested monitor model for a desk scene is considered

∗ACM, 2012. This is the authors’ version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version will be published in SIGGRAPH Asia 2012 Technical
Briefs, {SA ’12} http://doi.acm.org/10.1145/2407746.2407776
†e-mail: {laureen, sharonl, hanrahan}@cs.stanford.edu

an observed arrangement if the same monitor model appeared with
the same desk model in a training scene.

We present a system that leverages co-occurrence statistics in text to
create suggestions. Some advantages of text are that it is plentiful,
has broad coverage, and is widely available. Given enough text,
the fact that two objects are mentioned within a few words of each
other can indicate that those objects occur together spatially. We
use point-wise mutual information, which is explained in Section 4.
Specifically, we look at co-occurrences of model labels in an N-
gram, an ordered sequence of N words or other tokens. We take
N to be five, as this is the limit of our text corpus. This is not to
be confused with the N-grams used in [Torralba et al. 2009], which
come from annotated objects in scene data.

To evaluate our system, we compared it against a Graph Kernel sys-
tem which learns from the labels, spatial relationships, and geome-
try of models in a training corpus of 3D scenes [Fisher et al. 2011].
We found that the text-based system presented a much higher per-
centage of models that result in previously unobserved model ar-
rangements. Furthermore, combining our text-based system with
the Graph Kernel system resulted in one that suggested more un-
observed model arrangements with higher precision than the Graph
Kernel system alone (69% vs. 62%), where precision is the per-
centage of suggested models that user study participants marked as
sensibly belonging in a given partial scene.

2 Related Work

This work is influenced by [Fisher and Hanrahan 2010] and [Fisher
et al. 2011], which suggest models to place in a new scene by
learning scene and model relationships from a 3D scene corpus.
In [Fisher and Hanrahan 2010], users specify a 3D bounding box in
a partially constructed scene, and the algorithm performs context-
based queries for relevant models. The algorithm learns spatial
offset relationships between pairs of models from a corpus of 3D
scene data to predict the strengths of relationships between candi-
date models and existing objects in the partial scene. It augments
keyword search with this information, to return relevant models.

[Fisher et al. 2011] converts scenes into graphs (rather than pair-
wise relationships) that encode models and their spatial relation-
ships semantically. A graph kernel then compares common struc-
tures in two scene graphs to determine the similarity between the
scenes. This can be used in context-based model search and other
tasks. Using spatial context to help determine objects in a scene
has also been applied successfully in the area of computer vision
[Strat and Fischler 1991; Galleguillos et al. 2008]. The text-based
algorithm presented in this paper likewise uses a context-based ap-
proach, but is trained on text data rather than 3D scene data.

The WordsEye project demonstrated that text N-grams (in the form
of phrases) can be automatically converted into scenes [Coyne and
Sproat 2001]. However, in that project, the objects being rendered
in a scene are explicitly specified in the input phrase, and thus the
work does not suggest models.

3 Datasets

For our experiments, we use two main datasets. For our 3D scene
data, we use the Stanford Scene Database [Fisher and Savva], since

it provides models that are well segmented. This database contains
approximately 140 artist-made scenes and 1,736 object models. We
take 120 of these scenes (encompassing 1,580 of the available mod-
els) to be in our 3D scene training set. Each model also has labels
(both names and tags) taken from Google 3D Warehouse. Since
any user can label models in Google 3D Warehouse, the labels are
not guaranteed to be accurate, spelled correctly, or even in English.1

However, our system was robust to this noise.

For our text corpus, we use the Google Web 1T N-grams dataset
[Brants and Franz 2006]. This is a cleaned dataset based on a crawl
of the Internet in 2006, and contains approximately 1.2 billion 5-
grams and their associated counts. Approximately 52% of the cor-
pus contains at least one label from our 3D model database.

4 Algorithm

We describe the three algorithms compared in this paper: the text-
only N-gram Analyzer, a modified Graph Kernel system informed
by 3D scene data [Fisher et al. 2011], and a merged system.

4.1 N-gram Analyzer

Figure 1: The N-gram Analyzer pipeline.

The N-gram Analyzer has two main stages. In the preprocessing
stage, we clean the model labels from the 3D scene database: we
convert all labels to lowercase to enforce consistency, and filter out
any tag labels that are stopwords.2 We do not filter out name labels
that are stopwords, since some models may only contain stopwords
as labels. There are a total of 1,620 name labels and 5,266 tag labels
in the Stanford Scene Database. Filtering the tag labels removed 65
tags, leaving a total of 5,201 cleaned tag labels.

Next, we take all labels present in the Stanford Scene Database, and
use the Web N-grams corpus to calculate the score between each
pair of labels. We take the point-wise mutual information (PMI)
between label pairs as the score, as this metric is well-established
in NLP (most notably in collocation extraction [Bouma and Kuhn
2009]). PMI is defined to be:

PMI(A,B) = log

(
Pr(AB)

Pr(A)Pr(B)

)
. (1)

1For instance, some name labels are: m, p, and zapatos, while some tag
labels are: *, refridgerator, and waschbecken.

2Stopwords include those in the Lextek stoplist [Lextek] and custom
stopwords: and ∗ −+ . () | ,

For our purposes, Pr(AB) is the probability that word A and word
B both occur within the same 5-gram.

After computing the scores between all label pairs, we store them
in an inverted list, which allows the lookup of labels that have the
highest score relative to the query label.

We can now move to the suggestion stage. Our first step is to con-
vert the given 3D scene into text. We take the five closest models
to the focal point where an object is to be placed, and store their
labels to use as context for the user query. We then aggregate the
inverted lists for all query labels by summing them up and normal-
izing the contributions from each context model. Figure 2 shows
a visual example of creating an aggregate inverted list given two
context models labeled fork and spoon.

Figure 2: A simple example showing how two inverted lists may be
aggregated by using score summation.

In this example, the knife label has the highest aggregate score of
7.5. Mathematically, the aggregate score of a label o is:

score(o) =
∑
m∈M

score(o,m) (2)

score(o,m) =
wn

|N(m)|
∑

n∈N(m)

PMI(o, n) +

wt

|T (m)|
∑

t∈T (m)

PMI(o, t)
(3)

where M is the set of context models, N(m) is the set of name
labels and T (m) is the set of tag labels associated with context
model m. The terms |N(m)| and |T (m)| in the denominators pre-
vent models with a large number of similar labels from getting an
unfair advantage over models that have only a few labels.

Once we have an aggregate inverted list of highest-scoring labels,
we go through each of the 1,736 models in our database and calcu-
late a model score for each. The candidate model score is defined
as:

model score =
wn

|N |
∑
n∈N

score(n) +
wt

|T |
∑
t∈T

score(t) (4)

where score(l) is the score of label l in the aggregate list, N is the
set of name labels, and T is the set of tag labels, associated with
the model. We tune the weights wn and wt according to a separate
development dataset.

One issue with the above algorithm is that some labels in the Stan-
ford Scene Database are longer than five words, and, thus, they
would never co-occur with other labels in our 5-gram corpus. We
use a form of smoothing to take into account partial label co-
occurrences. This results in a few changes to the algorithm:

In the preprocessing step, we break all labels in the model database
into their component subgrams (unigrams up to 4-grams), and cal-
culate PMI scores between all pairs of these labels (including sub-
grams).

Equation (3) is redefined to take into account subgram labels:

score(o,m) =
wn

|N(m)|
∑

n∈N(m)

PMIs(o, n) +

wt

|T (m)|
∑

t∈T (m)

PMIs(o, t)
(5)

PMIs(o, n) = PMI(o, n) + δ
∑

s∈S(n)

PMI(o, s) (6)

PMIs(o, t) = PMI(o, t) + δ
∑

s∈S(t)

PMI(o, s) (7)

where S(n) are the subgrams of the name label n, and S(t) are the
subgrams of the tag label t.

Finally, in Equation (4), score(n) and score(t) are replaced by:

label score(l) = score(l) +
∑

s∈S(l)

score(s) ∗ α|l|−|s| (8)

where |l| and |s| are the total number of tokens in the label l and
subgram s respectively. The value of α scales up contributions from
higher-order subgrams. Both δ and α were tuned between 0.0 and
1.0 according to a separate development dataset (described in Sec-
tion 4.3).

4.2 Graph Kernel System

We implement the Graph Kernel system described in [Fisher et al.
2011]. In this system, a model and its neighborhood are represented
as a graph where nodes are models and edges are surface contacts.
Model similarity is computed by comparing all walks in the graph
rooted at model A with all walks in the graph rooted at model B
and summing the scores. Two walks are compared to each other
by using a node kernel that compares each node in the walk and an
edge kernel that compares each edge in the walk. More details on
this algorithm can be found in [Fisher et al. 2011].

The length of the walk along the relationship graph is set to three,
which is sufficient for scenes in our dataset. Longer walks would
only be needed for tall stacks of models. Given a query point in a
scene, the system creates suggestions by going through each scene
in the database and ranking models according to the similarity be-
tween the query point neighborhood and the model neighborhood.

4.3 Merged System

To combine the N-gram Analyzer system with the Graph Kernel
system, we simply merge the model suggestions lists from each
system of interest. The Graph Kernel system generally calculates
scores between 0.0 and 1.0, normalized according to [Fisher et al.
2011], and the N-gram Analyzer returns scores between negative
infinity and infinity. We normalize the Graph Kernel score to be be-
tween 0.0 and 1.0 if the suggestions list for a query contains scores
over 1.0, and do the same for the N-gram Analyzer. We discard
suggestions from either list that have a score of 0.0 or lower. Fi-
nally, we weight the scores of each suggestion according to which
analyzer they came from, and add the suggestion and score to a
merged list.

For our experiments, we tuned the weight value using a separate
development dataset containing six diverse scenes from the Stan-
ford Scene Database with two regions of interest per scene. For this
dataset, we had two people mark all of the models in the database

that were good suggestions for each region of interest. Their an-
swers were unioned to get a final dataset of “good” model sugges-
tions for each region of interest. Our goal with the tuning was to
maximize the “goodness” of the overall suggestion set while try-
ing to introduce more suggestions resulting in unobserved model
arrangements.

5 Experiments & Results

For our experiments, we selected 9 regions of interest from a variety
of scenes, including a bathroom scene, a bedroom scene, a living
room scene, and an office scene. We consider the top 10 suggestions
from each of the three analyzers for each of the scenes

Our first question is whether the N-gram Analyzer suggests more
unobserved model arrangements, compared to the Graph Kernel
system. We considered a model arrangment observed if any of its
model pairs were seen within a walk length of 3 in the training ex-
amples. Because the Graph Kernel is more limited to model combi-
nations seen in its training examples, we believed that combining it
with the N-gram Analyzer would result in more unobserved model
arrangements. We looked at the top 10 suggestions for each of our
9 scenes and counted the number of suggestions resulting in unob-
served model arrangements.

With this number established, the next question is, are these sug-
gested model arrangements reasonable? To evaluate the number
of suggestions people considered reasonable, we conducted a user
study (N=16) that compared the suggestions from the N-gram An-
alyzer, Graph Kernel, and the Merged system from these scenes.
Users were shown a screenshot of the region of interest and one
suggested model out of the pool at a time in a random order. Users
were asked whether or not the suggested model made sense as ei-
ther a replacement model for some other model in the visible part
of the scene, or as a new addition to the scene.

5.1 Number of Unobserved Arrangements

The text-based N-gram Analyzer and the Graph Kernel systems
often gave different suggestions. The overlap in the top 10 sug-
gestions for all scenes was just 1.1%. Figure 3 shows the top 10
suggestions for a desk scene, with the unobserved arrangements
highlighted. In this example, the N-gram Analyzer suggested many
more models that result in unobserved arrangements than the Graph
Kernel system, which suggested models already seen on the same
desk in its training examples.

Figure 3: Top 10 suggestions for a desk scene. Highlighted sug-
gestions are ones that result in unobserved model arrangements.

Table 1 shows the percentage of suggestions that resulted in un-
observed model arrangements across all 9 scenes. Overall, the
N-gram Analyzer and the Merged system suggested more unob-
served model arrangements compared to the Graph Kernel (82.2%
and 68.6% vs 45.6%, respectively).

Table 1: Percentage of suggestions from each system that result in
unobserved model arrangements.

N-grams Merged GK
82.2% 68.6% 45.6%

5.2 User Study Results

We conducted a repeated-measures two-way ANOVA to study the
effects of the system and whether the suggestion resulted in an un-
observed arrangement on precision. The analysis indicated that the
N-gram Analyzer may perform differently relative to the other sys-
tems (p < 0.01) depending on if the suggestion results in an unob-
served or observed arrangement.

Table 2 shows the precision as percentage of suggestions “mak-
ing sense” for each system. The N-gram Analyzer and the Graph
Kernel had comparable precision when it came to suggesting mod-
els resulting in unobserved arrangements. The Merged system also
had slightly better precision on these models than the Graph Kernel
system (p = 0.02 for paired, one-tailed t-tests). Overall, the sugges-
tions from the Merged system are rated comparably with respect
to reasonableness to the suggestions from the Graph Kernel. Thus,
not only does the Merged system suggest more unobserved model
arrangements, but it also maintains the overall “goodness” of the
suggestion set.

Table 2: Precisions as “making sense” for each system for sugges-
tions that result in unobserved and observed model arrangements.
Bolded maximum precisions are significant at p < 0.01.

System Unobserved Observed All
NG 66.04% 70.70% 66.88%
GK 62.04% 80.48% 72.08%
M 68.64% 83.87% 73.89%

5.3 Discussion

The Graph Kernel can only suggest a model that is contained within
a training scene. In the Stanford Scene Database, 90% of the mod-
els are contained within the 120 training scenes. However, there
are often cases where there is a large database of models but only
a few scenes, and so, the Graph Kernel only has a small number of
models it can suggest. In these cases, the N-gram Analyzer can be
particularly helpful in adding diverse suggestions.

Because the N-gram Analyzer uses PMI statistics from a large text
corpus, it is not tied to a smaller corpus of 3D scenes. Most of the
suggestions from the N-gram Analyzer were unobserved arrange-
ments in the training corpus used by the Graph Kernel. In addition,
these unobserved arrangements were rated as reasonable as the ones
from the Graph Kernel in our user study. Combining the N-gram
Analyzer with the Graph Kernel resulted in more unobserved ar-
rangements with a slightly higher precision.

A possible reason for this comparable, but slightly higher, precision
is that the Merged system has more reasonable suggested models to
choose from. A suggestion that is scored highly by the Graph Ker-
nel means that the system could find a similar model neighborhood
in its training scenes, while a suggestion that is scored lowly means

that the neighborhoods in the training scenes were not very simi-
lar. These low-scoring suggestions from the Graph Kernel are then
replaced by suggestions from the N-gram Analyzer.

6 Conclusion & Future Work

We have shown a method to facilitate the modeling of rich 3D
scenes by suggesting additional models that plausibly fit in the
scene. Previous approaches learn good suggestions from a rela-
tively limited corpus of 3D scenes. Our approach combines data
from a 3D scene corpus with text data from the Internet, which is
abundant and publicly available. We show that the N-gram Ana-
lyzer suggests a much higher percentage of models resulting in un-
observed arrangements than a Graph Kernel system trained on 3D
scene examples (82% vs. 46%). Additionally, we find that com-
bining the N-gram Analyzer with a Graph Kernel system via a sim-
ple merge of the suggestions lists from each gives better results for
novel models than the Graph Kernel system by itself (p = 0.002)
and adds more unobserved model arrangments than the Graph Ker-
nel alone.

For future work, we plan to experiment with more metrics to use
with the N-gram Analyzer. There are also alternative methods of
using N-grams to determine which models belong with other mod-
els in a scene, such as using distributional similarity or relation ex-
traction. There is also the possibility of combining the N-gram An-
alyzer and Graph Kernel system in different ways, rather than just
a simple weighted merge of output suggestion lists.

7 Acknowledgements

This work was supported by NSF grant CCF-1111943, and the Intel
Science and Technology Center on Visual Computing. We would
also like to thank Jay Ponte and Gabor Angeli for helpful discus-
sions.

References

BOUMA, G., AND KUHN, J. 2009. Normalized (pointwise) mutual
information in collocation extraction. GSCL 2009, 31–40.

BRANTS, T., AND FRANZ, A., 2006. Web 1t 5-gram version 1.

COYNE, B., AND SPROAT, R. 2001. Wordseye: an automatic
text-to-scene conversion system. SIGGRAPH 2001, 487–496.

FISHER, M., AND HANRAHAN, P. 2010. Context-based search for
3d models. SIGGRAPH Asia 2010, 182:1–182:10.

FISHER, M., AND SAVVA, M. Stanford scene database. Available
from http://code.google.com/p/stanford-scene-database/.

FISHER, M., SAVVA, M., AND HANRAHAN, P. 2011. Charac-
terizing structural relationships in scenes using graph kernels.
SIGGRAPH 2011, 34:1–34:12.

GALLEGUILLOS, C., RABINOVICH, A., AND BELONGIE, S.
2008. Object categorization using co-occurrence, location and
appearance. In CVPR 2008, 1–8.

LEXTEK. Onix text retrieval toolkit: Stop word list 1. Available
from http://www.lextek.com/manuals/onix/stopwords1.html.

STRAT, T., AND FISCHLER, M. 1991. Context-based vision: Rec-
ognizing objects using information from both 2d and 3d imagery.
IEEE TPAMI 13, 1050–1065.

TORRALBA, A., RUSSELL, B. C., AND YUEN, J. 2009. Labelme:
Online image annotation and applications. Tech. rep.

