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Abstract
We introduce an algorithm for automatic selection of semantically-resonant colors to represent data (e.g., using
blue for data about “oceans”, or pink for “love”). Given a set of categorical values and a target color palette, our
algorithm matches each data value with a unique color. Values are mapped to colors by collecting representative
images, analyzing image color distributions to determine value-color affinity scores, and choosing an optimal
assignment. Our affinity score balances the probability of a color with how well it discriminates among data
values. A controlled study shows that expert-chosen semantically-resonant colors improve speed on chart reading
tasks compared to a standard palette, and that our algorithm selects colors that lead to similar gains. A second
study verifies that our algorithm effectively selects colors across a variety of data categories.

Categories and Subject Descriptors (according to ACM CCS): H.5.m [Information Interfaces]: Misc—Color

1. Introduction

Colors play a central role in data visualization, where they
are used to label, measure and enliven data. Appropriate hues
help us recognize and discriminate categories. Gradations of
luminance or saturation support ordinal and (to a lesser de-
gree) quantitative comparisons.

Colors are also charged with rich associations. Concepts
can invoke colors, and vice versa. Common associations in
the United States include bananas↔ yellow, anger↔ red,
and money ↔ green. These associations may be grounded
in the physical appearance of objects, common metaphors,
or other linguistic or cultural conventions. We use the term
semantically-resonant to refer to color choices that are
evocative of a given concept.

In this paper, we investigate concept-color associations
to design effective categorical color assignments for visu-
alization. Theoretically, we note at least two motivating fac-
tors for why semantically-resonant mappings may improve
chart reading. First, such mappings may aid understanding
through semantic facilitation, i.e., they may allow people to
use more automated pathways to process value-color asso-
ciations and require less conscious thought [Baj88]. Second,
using resonant colors may improve memory [Ber91]. Prac-
tically, improved recognition of category values may reduce
the need to consult a legend and may promote future recall.

Can a semantically-resonant assignment of colors to val-
ues aid interpretation of data? To address this question, we
first conducted a pilot study comparing people’s speed on
chart reading tasks (comparing values for categories in bar
charts) when using semantically-resonant colors or random
colors from a default palette. All palettes were designed by
the same color expert. Our results showed significant perfor-
mance benefits for semantically-resonant colors, motivating
the present work.

We make two primary contributions: (1) an algorithm
for automatic selection of semantically-resonant colors and
(2) experimental analyses of chart reading performance
under three different color-assignment conditions (expert-
crafted, algorithmically-generated, and default order). Fig-
ure 1 shows an example of bar charts colored according to
these different assignment schemes.

Given as input a set of categorical values and a target
color palette, our algorithm maps each data value to a unique
color in the palette. We first collect representative images for
each value using Google Image Search. Then, we analyze
the color distributions of these images to determine affinity
scores between data values and candidate colors. Our affin-
ity score balances the frequency of a color in the images with
distinctiveness, or how well the color discriminates between
category values. We then compute an optimal assignment of
colors to values according to these affinity scores.
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Figure 1: Bar charts depicting fictional fruit sales. The charts use color assignments from an expert (left), our algorithm
(center), and a standard palette (right). The first two charts use semantically-resonant colors to represent data values.

Our algorithm selects among colors present in a can-
didate palette, rather than generating a color palette from
scratch. The candidate palette can be chosen to enforce de-
sirable perceptual properties, including a proper luminance
range, equivalently salient colors, color distinctiveness and
nameability [HB03, Sto08, HS12]. We assume an appropri-
ate palette has been provided; the algorithm focuses on de-
termining a semantically-resonant assignment.

We then present results from two experiments that eval-
uate our algorithm and assess the benefits of semantically-
resonant colors. The first experiment measures participants’
speed on a set of chart reading tasks with a small num-
ber of categories. Participants see expert, algorithmic, or or-
dered color assignments. Both the algorithmic and ordered
assignments use the 20-color categorical palette designed for
Tableau, a commercial visualization tool. Expert color as-
signments were hand-crafted by the creator of the Tableau
palette and not constrained to a fixed candidate color set.
This allows us to estimate an upper bound on the benefits of
semantically-resonant colors. We find that both expert and
algorithmic assignments significantly improve performance
over ordered assignments, and that algorithmic assignments
have comparable performance to expert quality overall. The
second experiment verifies that the benefits of algorithmic
assignment generalize to a wider set of categories.

2. Related Work

2.1. Color Names and Cognition

Psychologists have investigated how color names contribute
to semantic interference or facilitation. For example, linguis-
tic patterns in color naming may affect which color shades
are confused in memory [RDD00, WB07]. Contrasting tex-
tual and color cues produce strong interference (the Stroop
effect) [Mac91]. When color names are printed in a conflict-
ing color (e.g., red or yellow) subjects take longer to name
them. Incongruent color-related words (e.g., fire and grass)
also cause interference [DA72]. Interference is not observed
when colors are semantically-resonant with the text.

2.2. Modeling Color Associations

In the closest related work, Havasi et al. [HSH10] investi-
gate how to select colors for words and phrases that describe

a concept. They introduce an algorithm that generates col-
ors for a particular word by interpolating between known
word-color associations. Their algorithm maps a single value
(word or phrase) to a single best color, and does not consider
mappings to multiple valid colors (e.g., apples may be red
or green). In this paper, we select among multiple possible
color assignments for a value and examine how discrimina-
tive colors are across a set of values.

A related topic is modeling associations between colors
and names. Some researchers fit statistical models to human
judgements of color-name associations [BTBV02, Mor03,
CSH08, MMW10, HS12]. Others learn these associations
by analyzing images retrieved from search engines [VD-
WSVL09, SS12], using topic models such as Probabilistic
Latent Semantic Analysis (PLSA) [VDWSVL09] or super-
vised Latent Dirichlet Allocation [SS12]. Additional heuris-
tics (e.g., saliency detection and outlier removal) increase
model robustness [SS12]. The goal is to predict a color name
label given an image pixel or region. Although our method
also queries image search engines, our goal is to assign
semantically-resonant colors to categorical data.

2.3. Color Palette Design Tools

Previous work on color design for data visualization falls
into practical guidelines and interactive systems for inform-
ing color choices. These guidelines are based on data type,
number of classes, and perceptual constraints. For example,
large differences in luminance and saturation may suggest
an ordering in colors and should be avoided for qualitative
palettes [HB03]. Colors should be well separated [Hea96]
and should not compete with each other [Tuf90]. To safe-
guard against these pitfalls, by default our method selects
colors from the Tableau 20 palette, which was designed
specifically for visualization applications.

Interactive systems and algorithms to guide color choices
also exist, but they do not consider semantic associa-
tions between data values and colors. Prior work has opti-
mized color mappings based on spatial frequency [BRT95],
perceptual visibility [LSS12], color harmony [WGM∗08],
and display energy consumption [CWM09]. Rheingans and
Tebbs [RT90] introduced a tool allowing users to manipulate
color mappings to visually explore and filter data. Lastly,
other work has focused on generating palettes for artistic
rather than visualization applications [MSK04, OAH11].

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.



S. Lin et al. / Selecting Semantically-Resonant Colors for Data Visualization

2.4. Crowdsourcing Graphical Perception

Online crowdsourced experiments are attractive for their in-
creased scalability and reduced cost, and have been used
successfully in a number of perceptual experiments [HB10,
KZ10, TGH12] and color naming studies [Mor03, CSH08,
MMW10, HS12]. Heer and Bostock [HB10] demonstrate
the validity of crowdsourcing graphical perception experi-
ments by replicating prior laboratory experiments on Ama-
zon Mechanical Turk. Their crowdsourced results are con-
sistent with laboratory findings, albeit with higher variance.
This higher variance may be due to a diversity in factors such
as display size, viewing distance and lighting, which may
more accurately reflect real users’ environments.

3. Selecting Semantically-Resonant Colors

Our algorithm for semantically-resonant color assignment
takes as input a set of categorical values and a set of can-
didate colors. It then outputs an assignment from categorical
values to unique colors in the candidate set. We focus on
mapping to colors in a preselected palette to ensure desir-
able perceptual properties. In this paper, we use the Tableau
20 palette (Figure 2), a set of 20 colors designed for visual-
izing categorical data.

Figure 2: The Tableau 20 color palette.

For our studies we asked a color expert (the creator of the
Tableau 20 palette) to craft semantically-resonant color as-
signments. The expert started by finding relevant images for
each category set to identify representative hues. Different
kinds of images worked better for different categories. For
example, for fruits and vegetables, illustrations were more
useful than photographs. The expert then refined colors by
hand to optimize saliency and distinctiveness. When cate-
gories had multiple valid colors, she chose colors based on
the color associations of other values in the set so that the
color assignment had a more discriminating range of colors.

Our algorithm follows a similar process, and works in two
stages. First, in the data collection stage, it retrieves relevant
images and computes aggregate color histograms for each
categorical value. Second, in the color assignment stage, it
uses the color histograms to calculate color-value affinities
that balance the probability of a value taking a given color
with how well a color discriminates between values. The al-
gorithm then assigns values to colors to maximize the affini-
ties. We tuned the algorithm parameters using color assign-
ment judgments from workers on Mechanical Turk.

Separating data collection and assignment has two advan-
tages. First, data is collected for each categorical value in-
dependently of others, allowing data to be reused. Second,

in visualization tools, users may switch between different
styles of palettes, such as bold or pastel. Having a sepa-
rate assignment phase enables users to quickly swap palettes,
without having to collect data or compute aggregates again.

3.1. Data Collection

In the data collection stage, the algorithm retrieves images
for each value and computes aggregate histograms.

Searching for images. We use Google Image Search to
find images for each value. This approach has proven suc-
cessful for learning color name associations [VDWSVL09,
SS12]. We use two image queries: one with the original
value text and one with “clipart” appended. Multiple queries
diversify the types of images. As our color expert noted,
illustrations are more useful than general images for some
categorical values. For example, in the United States people
commonly associate money ↔ green, which is represented
in clip art. However, in photographs currency bills are closer
to gray. The regular query is useful for values that are not
depicted in clip art, or for which the clip art query returns ir-
relevant images. We explored other query expansions, such
as appending “color”, but we found these tend to return more
irrelevant images (e.g., of coloring books or rainbow-colored
images). The Google Image Search API limits the number
of image results to 32 per query. Filtering broken links and
grayscale images results in 29.5 images per regular query
and 27.3 images per clip art query on average.

Computing aggregate color histograms. Our algorithm
computes aggregate color histograms for each image query
type. For each categorical value, we create two color his-
tograms, one for the regular query and one for “clipart”. We
tabulate pixel colors across all images retrieved by a query
using 5×5×5 unit bins in CIELAB space. This bin size cor-
responds to a radius of approximately one just noticeable
difference (JND) [Sha02].

Retrieved images often contain white or black solid back-
grounds that are unrelated to the data value. Thus, we re-
move these backgrounds from images having at least two
connected components. Adjacent pixels are part of the same
connected component if their colors are within a distance
threshold τ. We consider an image to have a white (or black)
background if 75% of its border are within τ of white (or
black). We set τ to 3 CIELAB units (slightly larger than 1
JND). We found that advanced background subtraction al-
gorithms such as GrabCut [RKB04] and object saliency de-
tection [SS12] do not usually improve pixel selection, and
sometimes omit useful information. For example, such algo-
rithms may ignore “forest” image backgrounds with many
leaves and signature background colors from business logos.

3.2. Color Assignment

In the color assignment stage, the algorithm computes color-
value affinities that balance the probability of a value tak-
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ing on a color with how well that color discriminates be-
tween values. It then optimally assigns values to unique col-
ors according to these affinities. We tune all parameters in
this stage using cross-validation on a training set of crowd-
sourced semantically-resonant colors (Section 3.3).

Color probabilities. We calculate the conditional proba-
bility of a candidate color c given a categorical value v and
corresponding histogram T by applying kernel density esti-
mation (KDE) to the histogram (Equation 1). KDE is a non-
parametric method of estimating probability densities that is
robust to histogram bin size variation and can handle cate-
gorical values with multimodal color distributions. We ig-
nore color bins close to white, as very light and desaturated
colors are common across images but less useful for visual-
izations on a white background.

p(c|v,T )∝ ∑
b∈T

‖b−white‖2≥wt

T (b) exp

(
−1

2

(
dist(b,c)

σ

)2
)
(1)

In Equation 1, wt is the distance threshold from white,
and dist(b,c) is a color distance metric. Different distance
metrics might be used here. We use color name cosine dis-
tance [HS12], as it respects categorical color boundaries.
Based on cross-validation, we set wt = 20 units in CIELAB
space and set σ = 0.2 (see Section 3.3 for details).

This process results in two color distributions, one for
each type of histogram (regular Tr and “clipart” Tc), from
which to infer color information. Recall that some values
benefit from the “clipart” query images but others do not.
We assume that the histogram with stronger color associa-
tions for a particular value is more relevant to that value, and
thus contributes more to its overall color distribution.

To measure relevance, we look at entropy, a common
information-theoretic measure of the randomness of a dis-
tribution. The entropy of colors for a histogram is:

H(C|v,T ) =− ∑
c∈C

p(c|v,T ) ln p(c|v,T ) (2)

where C is the candidate set of colors, v is the given categor-
ical value, and T is the color histogram. If p(c|v,T ) is 0, we
skip contributions from c in the summation. The larger the
entropy of colors for a given histogram, the more random the
distribution and the weaker the color association. Therefore,
we weight the two probability distributions by the inverse
entropy, H(C|v,T )−1.

The final probability of a color c given a value v is then:

p(c|v)∝ max(sat(c), t) ·[
wc p(c|v,Tc)

H(C|v,Tc)
+

(1−wc) p(c|v,Tr)

H(C|v,Tr)

] (3)

where t = 0.1 is a minimum saturation threshold and wc =
0.7 is the prior bias towards the clip art histogram. The terms

wc
H(C|v,Tc)

and (1−wc)
H(C|v,Tr)

are the relative contributions each

histogram type makes towards the final color distribution
for that value. Thus, the algorithm favors the image query
source that has more consistent color associations, which
may change depending on the value.

Our formulation weights the probability based on the sat-
uration of the candidate color. We prefer candidate colors if
they are closer to histogram bins with high counts and have
higher saturation. High-saturation colors tend to be more dis-
criminative, and mixing different levels of saturation can im-
ply order misleadingly [HB03].

Color-value affinities. We compute color-value affinities
using color probabilities. Our affinity score promotes colors
that are common in images but also distinguish values from
others in the set. The affinity of a value v to a color c is:

affinity(c,v) =
p(c|v)

H(V |c) (4)

where V is the set of categorical values and H(V |c) is the
entropy of values given the color c, defined similar to Equa-
tion 2. Intuitively, H(V |c)−1 indicates how well a color dis-
criminates values from each other.

Several other choices exist for defining an affinity score.
We experimented with p(c|v) by itself as well as point-wise
mutual information between colors and values. In our tun-
ing and cross-validation tests, p(c|v) and p(c|v)

H(V |c) performed
comparably but we find the balanced metric provides quali-
tatively better color separation.

Lastly, we compute a color-value assignment that
maximizes the sum of affinities using the Hungarian
method [Kuh55]. Intuitively, this method resolves color-
affinity conflicts by compromising based on the strength of
a value’s affinity to each color. If two values v1 and v2 have
a strong affinity for color c, but v1 has no alternative colors
while v2 also has moderate affinity for an alternative color,
then v1 will be assigned to c and v2 to the alternative.

3.3. Algorithm Tuning and Validation

Our algorithm introduces several parameters that need to be
set to achieve good color assignments. We tune these pa-
rameters based on a collection of categorical value sets and
associated semantically-resonant colors. In this tuning pro-
cess we first gather sets of categorical values. We then col-
lect color assignments for the data from Mechanical Turk.
The collected data is split into training and test sets. Finally,
we choose parameters based on how well the resulting auto-
matic assignments overlap with Turkers’ choices in the train-
ing set. We evaluate the performance of the tuned model by
computing the overlap of automatic assignments with data
in the test set. The overlap between two color assignments
for the same set of categorical values is defined as

overlap(A,B) = ∑
v∈V

[A(v) == B(v)] (5)

where A and B are color assignments and V is a set of values.

c© 2013 The Author(s)
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3.3.1. Gathering Categorical Value Sets

We collect 40 categorical value sets for training and testing.
The sets were gathered from online graphs used by Savva et
al [SKC∗11]. The graphs come from various sources on the
web and so reflect a reasonable sampling of different types
of categories that people visualize or find interesting.

Across domains, categorical values can vary significantly
in their strength of color association. For example, categories
about crops (wheat, corn, etc.) are more strongly associated
with colors than are continents. In addition, some category
sets contain values that map well to unique palette colors,
while others have values that compete for the same color. For
example, different oil types (canola, sunflower, and olive oil)
all map to yellow. These characteristics influence how well
a given categorical value set maps to semantically-resonant
colors, or in other words, how colorable the value set is.

We anticipate that both the algorithm and Turkers will
choose better semantically-resonant colors for more col-
orable value sets. Thus, when gathering the 40 value sets, we
(subjectively) aimed for a range of colorability with 28 rea-
sonably colorable sets and 12 non-colorable sets. A few sets
were manually shortened by removing non-colorable mem-
bers to make them more colorable and understandable. For
example, a 14-value set of gambling activities was short-
ened to 7 by removing values such as “Pulltabs” and keeping
better-known activities such as “Horse racing”.

In each task, we asked Turkers to create color assignments
using the Tableau 20 palette for 10 value sets (7 colorable,
3 non-colorable). The instructions encouraged them to pick
the most “representative” color for each value, where no two
values can take on the same color. We also asked Turkers to
rate the strength of color-value association on a Likert scale
from 1 (Not associated at all) to 5 (Very strongly associated).
We treat the Likert ratings as an indicator of colorability.

The order of the value sets as well as the values within a
set were randomized. Tasks (Turk HITs) were limited to the
United States and priced at $1 USD. We gathered 25 palettes
for each value set. Figure 3 shows example sets (1 colorable,
1 non-colorable) with their crowd-chosen colors.

3.3.2. Tuning Based on Crowdsourced Palettes

Given a dataset of crowdsourced color assignments, we se-
lect algorithm parameters that best match the crowdsourced
data. From our 40 value sets we set aside 10 sets evenly
spread across the colorability ratings as test data. The other
30 sets are used for training. We tune parameters based on
10-fold cross validation on the training data, using average
overlap (Equation 5) with Turkers as the evaluation criteria.

During tuning we also experimented with different color
distances in Equation 1. We considered the current stan-
dard for perceptual color distance, CIEDE2000 [SWD05],
and color name cosine distance [HS12]. Empirically, we find
that color name cosine distance gives better cross-validation

Assets (3.9)
Platinum

Cash

Stocks

Bonds

Gold

Silver

Budget (2.7)
Social Security

National Defense

Medicare

Income Security

Health

Net Interest

Figure 3: Example categorical value sets and the counts of
colors chosen by Turkers. Numbers in brackets are the mean
colorability ratings. The first is an example of a more col-
orable set (mean rating: 3.9) while the second is less col-
orable (mean rating: 2.7)

Car Color (4.7) Food (3.6)

Features (3.2) Activities (2.7)

Red
Silver
Black
Green
Brown
Blue

A T
Sour Cream
Blue Cheese Dressing
Porterhouse Steak
Iceberg Lettuce
Onions (Raw)
Potato (Baked)
Tomato

A T

Speed
Reliability
Comfort
Safety
Efficiency

A T
Sleeping
Working
Leisure
Eating
Driving

A T

Figure 4: Category sets ordered by mean colorability rating.
Ratings are shown in parentheses. Column A contains colors
selected by our algorithm; Column T contains the Turker-
chosen colors with highest overlap.

results on the training set according to our overlap crite-
ria. Qualitatively, color name cosine distance respects color
boundaries better than CIEDE2000, which might replace
black with blue or yellow with green due to proximity.

3.3.3. Average Assignment Overlap with Turkers

After tuning on the training set, we run the algorithm on
the test set of categorical value sets. Figure 4 shows a few

c© 2013 The Author(s)
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random

Overlap

Car Colors (4.7)
Raining (4.2)
Assets (3.9)

Food (3.6)
Weather Hazards (3.4)

Foods (3.3)
Features (3.2)

Kingdoms (3.1)
Budget (2.7)

Activities (2.7)

Turkers
Color Name
CIEDE2000

0.0 0.2 0.4 0.6 0.8 1.0

Figure 5: Between-subject (Turkers) and algorithm-subject
agreement using color name distance and CIEDE2000 dis-
tance, as measured by average overlap. The gray line shows
the expected performance of randomly-selected colors. The
mean colorability ratings are in parentheses.

of the algorithmically generated assignments alongside the
most representative Turk assignment according to overlap.

Figure 5 compares the algorithm’s overlap with Turk as-
signments. To compute Turker agreement (blue), we calcu-
late the average overlap of one Turk assignment to all other
Turk assignments for a given categorical value set. As the
colorability rating of the categorical value set increases, the
average performance of all assignments also tends to in-
crease. Color name distance (orange) results in improved
performance on the test set compared to CIEDE2000 dis-
tance (green). On average, the performance of the algorithm
appears comparable to Turkers.

4. Experiment 1: Semantically-Resonant Colors

Our first experiment had two goals: (1) to verify that
semantically-resonant colors lead to improved graph read-
ing performance, and (2) to compare the performance of our
algorithm to both expert-chosen color assignments and se-
quential assignment from the Tableau 20 palette. We had two
primary hypotheses:

H1: Semantic resonance improves performance. Both
expert-chosen and algorithmically-chosen semantically res-
onant colors will improve graph reading performance.

H2: Expert-chosen assignments outperform others. An ex-
pert can draw on a wider amount of knowledge and produce
better semantically-resonant colors than our algorithm.

We tested these hypotheses through an experiment con-
ducted on Amazon Mechanical Turk. We asked participants
to answer questions using category-colored bar charts. Ques-
tions were representative of common graph-reading tasks
(e.g., “which category has a larger value?”). We colored the
bar charts using either the expert-chosen, algorithmically-
chosen, or sequential colors.

Participants. 144 US-resident workers (77 female) on
Mechanical Turk participated in the experiment. Four par-
ticipants reported they were color-blind, and their data was
discarded from analysis. Participants were paid $2 USD.

Method. The experiment followed a mixed between- and
within-subjects design, summarized in Table 1. We used a
mixed design (rather than a pure within-subjects design) to
reduce participant fatigue and ensure consistency with our
second experiment, which involved only two assignment
types. For a single block of trials we showed participants
a colored bar chart and asked 30 binary forced-choice ques-
tions (see Figure 7). Following the methods of Cleveland &
McGill [CM∗84], chart values were uniformly distributed
between 5% and 95% on a scale of 0− 100%. All indi-
vidual and aggregate values referenced by the experimental
prompts were separated by at least 5%.

Each trial involved one of three question types (within-
subjects variable). Participants compared individual bars (A
vs. B) or combinations of bars (A vs. B+C, A+B vs. C+D)
and were asked to report which of the quantities is larger. We
used these three question types to measure the effect of color
when different amounts of cognitive processing is required.
These question types follow prior experiments by Spence &
Lewandowsky [SL06], who found them effective for propor-
tional comparisons.

Table 1: Independent variables in Experiment 1.

Variable Levels

Question Type
“Which is larger, A or B?”

“Which is larger, A or B+C?”
“Which is larger, A+B or C+D?”

Category Type Concrete or Iconic
Assignment Type Ordered, Expert or Algorithm

At the start of the experiment, participants completed
training with 10 sample questions about data unrelated to
later trials. Participants then performed two blocks of tri-
als. Each subject saw questions from one category type
(between-subjects variable), and from two assignment types
(within-subjects). For the category type, subjects either saw
concrete values (fruits and vegetables) or iconic values
(company brands and soft drinks). We used two category
types to reflect the fact that some categories have non-
arbitrary color associations (cherries are physically red),
while others have arbitrary associations (Coca-Cola’s brand-
ing is red, but the drink is not). For the assignment type,
participants saw either Expert/Ordered, Expert/Algorithm,
or Algorithm/Ordered combinations.

The expert color assignments were crafted by the designer
of the Tableau 20 palette. We use Tableau 20 as both the
candidate color set for our algorithm and for the ordered (se-
quential assignment) condition. We did not constrain the ex-
pert to choose colors from Tableau 20, so as to determine an
approximate upper-bound for the benefits of semantically-
resonant colors. Categories and corresponding expert and
algorithm-chosen colors are shown in Figure 6.

In the first block of trials, each participant was shown 30
questions from the first category (10 of each question type).

c© 2013 The Author(s)
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Fruits Vegetables

Drinks Brands

Apple
Banana
Blueberry
Cherry
Grape
Peach
Tangerine

A E
Carrot
Celery
Corn
Eggplant
Mushroom
Olive
Tomato

A E

A&W Root Beer
Coca-Cola
Dr. Pepper
Pepsi
Sprite
Sunkist
Welch's Grape

A E
Apple
AT&T
Home Depot
Kodak
Starbucks
Target
Yahoo!

A E

Figure 6: Color assignments for categorical values in Ex-
periment 1. (A = Algorithm, E = Expert)

Figure 7: Experiment trial for an A+B vs. C+D question.

This was followed by the second block of trials: 30 questions
from the second category (10 of each question type). For
instance, a participant might see 30 questions on company
brands, followed by 30 on drinks. Questions were shown se-
quentially, with the next question appearing immediately af-
ter the participant answered the current one, both to mitigate
participants task-switching out of the experiment, and to get
better timing information. Both assignment type order and
question order were counter-balanced.

We measured both accuracy and response time as depen-
dent variables. Response time was the primary measure of
interest; accuracy was recorded to ensure task compliance.
All timing information was captured on the client using
JavaScript to avoid inaccuracies due to round-trip server de-
lays. Lastly, participants could only respond using the key-
board to eliminate mouse movement delays.

Response Time in Seconds (log scale)

Ic
on

ic
Co

nc
re

te

Ordered
Expert
Algorithm
Ordered
Expert
Algorithm

6 7 8 9 10 11 12

Figure 8: Experiment 1 results. Points depict means of log
response times, by condition. Error bars show 50% (thick)
and 95% (thin) confidence intervals.

4.1. Results

As is common with response times, we found the distribution
to be log-normal. We subsequently log-transform task com-
pletion times for use with ANOVA and mixed-effects mod-
els. An initial, repeated-measures ANOVA shows a signifi-
cant effect of assignment type on question answering time
(F(2,137) = 46.27, p < 0.001).

We then analyzed the data using a linear mixed-effects
model, using each participant as a random effect with a fixed
intercept. The assignment type was contrast-coded as reso-
nant or ordered, and as expert or algorithmic. These con-
trasts let us test whether resonant assignments help (H1), and
if expert assignments outperform algorithmic ones (H2). We
report the results from the mixed-effects model built with the
lme4 package in R. We report the conventional degrees of
freedom (based on the experimental design), model t-values,
and p-values from a Markov chain Monte Carlo simulation.

4.1.1. Semantically-resonant colors improve speed

We found a main effect for semantically-resonant assign-
ments. Both expert and algorithm assignments improve per-
formance across category types (t(126) =−2.24, p < 0.05),
supporting H1. The model also has a significant interaction
effect of resonance and category type (t(126) =−4.88, p <
0.05); resonant assignments helped most for the concrete,
non-arbitrary categories.

4.1.2. Expert assignment outperforms algorithm for
concrete categories

The type of resonant assignment had no significant main ef-
fect (t(126) = 0.64, p > 0.3). Overall, expert-chosen colors
did not improve performance more than algorithmic assign-
ment. However, there is a significant interaction effect of res-
onant assignment and category type (t(126) = −3.89, p <
0.05). Expert-chosen colors appear to outperform the algo-
rithm for concrete categories (Figure 8).

4.1.3. Question type moderates resonance gains

We found one significant interaction between question type
and assignment type. Resonant color assignments of both
kinds helped less with A+B or C+D questions (t(126) =
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2.03, p < 0.05). This may be because a large fraction of the
time for these complex questions is spent in computing the
right answer, rather than on identifying different data values.

4.2. Discussion

Speed. Across categories, semantically-resonant assignment
had a small but significant effect on response times. The ef-
fect sizes for log(time) using Cohen’s d measure are d =
0.15 for the algorithm and d = 0.17 for the expert colors,
compared to ordered assignment. On average participants
took 9.1 seconds per task using ordered assignments and 8.2
seconds and 8.1 seconds for algorithmic and expert assign-
ments, for an average improvement of 1 second. Much of
these savings come from the concrete categories; iconic cat-
egories have little or no effect (approximately 0.25 seconds).
This difference is not significant via a Tukey HSD test.

Though small, these effects can have important practi-
cal benefits. Time savings are measured in terms of a sin-
gle comparison task. Visualization viewers often engage in
many such comparisons both within and across plots. Small
gains in low-level recurring tasks may both speed chart read-
ing and reduce overall cognitive load.

Iconic vs. Concrete categories. Our current experiment
shows a surprising difference in performance across iconic
vs. concrete categories, but does not offer an explanation.
These differences may be particular to the assignments and
categories used, as we were constrained by the number of
expert-designed color assignments available. We look at a
larger set of diverse categories in Experiment 2.

5. Experiment 2: Wider Assessment across Categories

The goal of our second experiment was to verify that the per-
formance benefits of algorithmic assignment generalize to a
wider set of categories. We used the test set of categories
from Section 3.3.2, sampled from the ReVision visualiza-
tion corpus [SKC∗11] and spread across colorability ratings
(the list of categories is included in the supplementary mate-
rial). The number of values per category ranged from 4 to 8,
with a mean of 5.7. Experiment 2 follows a design similar to
Experiment 1; we describe any salient differences below.

Participants. 302 US-resident workers (224 female) par-
ticipated on Mechanical Turk, and were paid $1 USD. No
participants reported being color-blind.

Method. We used a between-subjects experiment design.
Each participant saw graphs for one category colored using
an ordered or algorithmic assignment. Subjects saw up to
10 questions for each question type; smaller sets had fewer
questions of the form A+B vs. C+D. Participants saw 25
questions, for an average of 8.3 questions of each type. Par-
ticipants saw at least one question from each type. We used
the same interface, candidate color palette (Tableau 20), and
question ordering scheme as Experiment 1.

Response Time in Seconds (log scale)

Ordered
Algorithm

6 7 8 9 10 11 12

Figure 9: Experiment 2 results. Points depict means of log
response times. Error bars show 50% (thick) and 95% (thin)
confidence intervals.8/19/13 Figure 10
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Figure 10: Experiment 2 results. Points depict means of log
response times for each category, organized by colorability.
Error bars show 50% confidence intervals.

5.1. Results

A repeated measures ANOVA shows significant differences
in (log transformed) task completion times between ordered
and algorithmic assignment (F(1,300) = 5.95, p < 0.05).
Post-hoc analysis below uses a mixed-effects model with
participant as a fixed random-effect and assignment type,
question type and interactions as covariates. We report re-
sults similarly as in Experiment 1.

5.1.1. Algorithmic assignment improves speed

With a model that includes the interaction between As-
signment and Question type, we found algorithmic assign-
ment has a main effect on task completion time (t(296) =
2.16, p < 0.05, Cohen’s d = 0.16; the degrees of freedom
are reduced because we added an interaction term). Algo-
rithmic assignment leads to faster performance, as shown in
Figure 9. In this experiment, we found no interaction be-
tween the assignment and the question type (t(296) = 1.17
for A vs. B+C and t(296) = 1.52 for A+B vs. C+D).

5.1.2. Algorithmic assignment preferentially benefits
highly colorable categories

A mixed-effect model that includes both the above inter-
action terms and colorability (Section 3.3) as a covariate
has a significant interaction effect of mean colorability rat-
ing and color assignment (Figure 10): algorithmic assign-
ment reduces time for more colorable categories (t(294) =
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−2.20, p < 0.05), while ordered assignments have no such
benefit (t(294) =−0.29, p > 0.3).

Are the performance gains associated with algorithmic
mapping limited to highly colorable categories? If we omit
the two most colorable category sets from our data (“cars”
and “raining”), we find that algorithm assignments do re-
duce completion time, but the effect is no longer significant
(t(204) = −1.54, p = 0.12; the number of observations is
reduced, which also reduces conventional degrees of free-
dom). Of course, this reduction in significance may also be
the result of having 20% fewer observations. This result sug-
gests that in practice the largest benefits may come from the
most colorable categories, but that algorithmic assignments
are still useful (albeit less so) for less colorable categories.
Moreover, we find no evidence in favor of ordered assign-
ment over semantically-resonant algorithmic assignment.

6. Discussion and Future Work

We presented an algorithm for assigning semantically-
resonant colors to categorical values. The resulting color
assignments agree well with crowdsourced human-created
color assignments. We also assessed the benefits of
semantically-resonant color mappings on chart reading time
via two controlled experiments. We find that both expert and
algorithmic assignments significantly improve performance
over default assignments, possibly through reduced reliance
on chart legends. In addition, these benefits hold for a wider,
more diverse set of categorical value sets. Our semantically-
resonant color assignment algorithm is available as open-
source software at http://github.com/StanfordHCI/semantic-
colors.

We now conclude with a discussion of the implications of
our work and possible directions for future work.

Significance of response times. As Gray and Boehm-
Davis note [GBD00], “Whether designers intend to engineer
interactions at the millisecond level, they do.” While shaving
off 0.5-1 seconds on a graph-reading task may seem small,
this represents more than 10% of the task-time. Furthermore,
analysts make many such comparisons, which add up.

In this paper, we investigated tasks that involve comparing
quantities for associated categorical values. Additional ex-
periments might be conducted to investigate the reverse task
of finding values that correspond to salient quantities (e.g.,
name the fruit with the highest sales). Our crowdsourced ex-
periments show that semantically-resonant colors can lower
response times, but do not establish the cause(s) of this im-
provement. More controlled laboratory experiments might
help identify these causes. For example, eye-tracking stud-
ies could be used to assess our hypothesis that semantically-
resonant colors lead to reduced legend lookups.

Intelligent image query techniques. We used a sim-
ple query-expansion technique (adding “clipart”), and intro-

duced a method to weight each expansion based on its rele-
vance to the categorical value. An extension of this method
may be used to incorporate more diverse data sources. For
instance, image search may not provide adequate informa-
tion, particularly for more abstract values (e.g., images for
“angry” often depict facial expressions rather than a sym-
bolic color). In these cases, using a knowledge base of
concept-color associations akin to Havasi et al. [HSH10],
and using semantic links to find colors through different
levels of indirection, may be more useful. Query-expansion
could also leverage information from other categorical val-
ues, or from the name of the category itself. For example,
the value “apple” can refer to both the fruit and the computer
company, and the name of the category (“fruit”) or other cat-
egorical values (“cherries”) may help disambiguate.

Balancing semantic resonance with perceptual con-
straints. This paper demonstrates benefits for semantically-
resonant color assignments in visualization. However, there
are other concerns, such as color discriminability, that arise
when choosing visualization colors. In the present work,
we address these concerns by using a palette (Tableau 20)
specifically designed to satisfy such constraints. However,
the general problem of balancing semantic resonance with
perceptual constraints is still largely unsolved. Our current
fixed-palette approach has shortcomings when categorical
values have strong but perceptually similar color associ-
ations (e.g., “wind”, “tornado”, and “flood”). Here, color
assignments from our algorithm tend to contain a narrow
range of hues. Further experiments might explore tradeoffs
between semantic resonance and discriminability to inform
better automatic color assignments.

Palette design for algorithmic assignment. Our algo-
rithm benefits from a predefined palette that helps ensure
basic perceptual concerns are met. However, the Tableau
20 palette was designed assuming primarily arbitrary color
assignments to values. Could palettes be designed to sup-
port algorithmic assignments from the ground up? Larger
palettes with more hues (and perhaps color co-occurrence
constraints) might extend the effectiveness of our approach.
For example, such palettes may allow algorithms to select
hues for a wider range of categories or use additional satu-
ration or luminance levels when more resolution is needed
(e.g., needing three different shades of green rather than
two). Crafting new palettes to support semantically-resonant
algorithmic assignment – while maintaining perceptual and
aesthetic qualities – poses an interesting design challenge.
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